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Abstract
We present a detailed classification of random Dirac Hamiltonians in two
spatial dimensions based on the implementation of discrete symmetries. Our
classification is slightly finer than that of random matrices and contains 13
classes. We also extend this classification to non-Hermitian Hamiltonians with
and without a Dirac structure.

PACS numbers: 73.43.−f, 05.50.+q, 11.25.Hf, 11.55.Ds, 73.20.Fz

1. Introduction and results

Recently, there has been an increasing interest in two-dimensional localization problems whose
behaviour differs from generic Anderson localization [1]. To mention but a few examples,
there are investigations of the quantum Hall transition [2–5], of quasi-particle localization in
systems with degenerate Fermi surfaces [6] and dirty superconductors [7–10], and studies of
hopping models on bipartite lattices [11, 12].

Universality classes of localization/delocalization transitions depend largely on their
discrete symmetries. Thus the Wigner–Dyson classification of random Hermitian matrices
[13, 14] plays a significant role. Localization in superconductors led Altland and Zirnbauer
to significantly extend the Wigner–Dyson classification by incorporating particle–hole and
chirality symmetries of the matrices [15].

Most of the localization problems mentioned above may be formulated as spectral
problems for Dirac-like Hamiltonians in two spatial dimensions and many of them differ
from generic Anderson localization in that they exhibit a singular density of states at the
critical point.

In this paper, we present a somewhat detailed classification of such Dirac Hamiltonians in
two dimensions. This classification potentially differs from that of random matrices because in
the latter no structure is imposed on the matrices—and matrices differing by unitary similarity
transformations are treated as equivalent—whereas in the former the Hamiltonians a priori
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possess a Dirac form. This may have two opposite effects: either some random matrix classes
may not be realized by Dirac operators, or Dirac Hamiltonians belonging to the same random
matrix class may not be equivalent if the unitary similarity transformation relating them does
not preserve the imposed Dirac structure. Although some models of random Dirac fermions
have already been identified with Altland–Zirnbauer classes, the correspondences have not
been fully established and one motivation of our classification is a more complete dictionary.

The essential difference between these two classifications is a doubling of the chiral
classes. Namely, each of the three chiral classes of random matrices is split into two distinct
Dirac Hamiltonian classes. Thus, there exist random Dirac Hamiltonians which belong to
the identical matrix class but which may exhibit different localization phenomena. This
makes clear that the physics of the two-dimensional random Dirac fermions is richer than
expected from the random matrix theory. These differences do not occur for Schrödinger-like
Hamiltonians of the form H = −∇2

x + V (x) with V (x) being local random matrices.
Since each of the ten classes of random matrices has been associated with a σ -model

on a symmetric space, an interesting question concerns how the σ -models can incorporate
the finer classification described in this paper. One possible answer is that σ -models in two
dimensions—towards which the effective field theory describing these transitions may flow—
support a topological θ -term or Wess–Zumino term. These terms may render the theories
critical or conformally invariant. This scenario has recently been checked in [33] in a large N
approach using controlled approximations. The two chiral classes of Dirac Hamiltonians are
distinguished by the presence or absence of a WZW term, so that in each pair of chiral classes
one is conformally invariant. This illustrates the relevance of our finer classification.

We consider Dirac Hamiltonians H = (τxpx + τypy)/2 + �τ · �W + W0, where �τ are Pauli
matrices5, px,y = −i∂x,y , andW0 and �W are generalized masses or potentials, and are matrices
acting on an isospin sector. Introducing complex coordinates, z = x + iy, z̄ = x − iy, and
∂z = (∂x − i∂y)/2, ∂z̄ = (∂x + i∂y)/2, after a unitary transformation one generally obtains the
following 2 × 2 block structure:

H =
(

V+ + V− −i∂z̄ + Az̄

−i∂z + Az V+ − V−

)
. (1.1)

Here Az, Az̄ and V± are random matrices depending on the spatial coordinates x, y and
belonging to some statistical ensemble.

As usual, the classes are sets of Hamiltonians with specific transformation properties under
some discrete symmetries. For Dirac Hamiltonians (1.1), the simplest symmetries are chiral,
particle–hole and time-reversal symmetry, which relate the Hamiltonian H to −H , its transpose
HT and its complex conjugate H ∗, respectively. We demand that these transformations are
implemented by unitary transformations and that their actions on the Hamiltonian square to
one. They also should preserve the form (1.1) of the Dirac Hamiltonian. Hence we consider
the following transformations:

P symmetry: H = −PHP−1 P =
(
γ 0
0 −γ

)
PP † = 1 P 2 = 1 (1.2)

C symmetry: H = εcCH
TC−1 C =

(
0 σ

−εcσ 0

)
CC† = 1 CT = ±C (1.3)

K symmetry: H = εkKH ∗K−1 K =
(

0 κ

−εkκ 0

)
KK† = 1 KT = ±K (1.4)

5 Pauli matrices will be denoted by �τ or �σ depending on which space they are acting. Our convention is

σz =
(

1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 i

−i 0

)
.



A classification of 2D random Dirac fermions 2557

Table 1. Random Dirac Hamiltonian classes.

Random matrix Time-reversal Particle–hole
class invariant symmetry Chirality Symmetry group

Class 0 A = GUE no no no U(n)

Class 1 AIII = chiral GUE no no yes U(n)

Class 2 AIII = chiral GUE no no yes U(n) × U(n)

Class 3+ AII = GSE yes no no O(n)

Class 3− D no yes no O(n)

Class 4+ AI = GOE yes no no Sp(2n)
Class 4− C no yes no Sp(2n)
Class 5 DIII = chiral GOE yes yes yes O(n)

Class 6 CI = chiral GSE yes yes yes Sp(2n)
Class 7 DIII = chiral GOE yes yes yes O(n) × O(n)

Class 8 CI = chiral GSE yes yes yes Sp(2n) × Sp(2n)
Class 9+ DI yes yes yes U(n)

Class 9− CII yes yes yes U(n)

where εc = ±1. Type P symmetries are commonly referred to as chirality symmetries,
C expresses a particle–hole symmetry and K time-reversal symmetry. For Hermitian
Hamiltonians, since HT = H ∗, C and K symmetries are identical and we will only talk
about C symmetry, where εc = +1 will be interpreted as time-reversal symmetry and εc = −1
will be referred to as particle–hole symmetry.

We found 13 distinct classes of Hermitian Dirac Hamiltonians, listed in equations (2.16)–
(2.25). This classification, which is presented in section 2, is slightly finer than that of random
Hermitian matrices [15]. See table 1 for comparison. (The numbering of the classes has no
special meaning.)

Let us mention a few well-known realizations of the classes of table 1. Classes 0 (GUE),
3+ (GSE) and 4+ (GOE) are the usual Wigner–Dyson classes. The U(1) model of class 0
was introduced in [5] in connection with the quantum Hall transition. The U(n) case of class 0
appeared in [6] for describing systems with degenerate Fermi points. The chiral classes
1 (chGUE), 5 (chGOE) and 6 (chGSE) are realized by Dirac operators coupled only to random
gauge potentials [19]. The U(n) model of class 1 was applied to dirty d-wave superconductors
in [7]. The pure U(1) random gauge potential is still not completely solved due to some
recently recognized non-perturbative effects [16–18]; the non-Abelian cases have been solved
by various methods [7, 20, 21]. The chiral class 2 (chGUE) is realized by the Gade–Wegner
hopping models [11]. (See [22] for a recent numerical study.) The class 3− (D) [23] and
class 4− (C) [24] appeared in the context of dirty superconductors with broken time-reversal
symmetry. Numerical analysis of the sp(2) model of class 4− (C), the so-called spin quantum
Hall effect, was performed in [25] and exact results were obtained by mapping it to percolation
[26].

Non-Hermitian random Hamiltonians have recently been used in the description of various
phenomena (see e.g. [27]). In section 3 we extend our classification to non-Hermitian
Hamiltonians. In addition to type P,C and K symmetries, we may consider a Q symmetry
relating H to its adjoint:

Q symmetry : H = εqQH †Q−1 Q =
(
ξ 0
0 εqξ

)
QQ† = 1 Q2 = 1. (1.5)

Imposition of these symmetries selects reality conditions on the potentials Az, Az̄ and V±. Of
course, the type Q symmetry with εq = 1 and ξ = 1 simply means that H is Hermitian. From
any non-Hermitian Dirac operator one may naturally define a Hermitian operator, denoted by
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H, by doubling the Hilbert space on which it acts (see equations (3.4)). The latter Hamiltonian
is then a representative of the chiral class we have indexed as class 2 (chGUE). However,
as we explain, the classification of the non-Hermitian Dirac operators H is finer, and more
involved, than that of their doubled companions H. We find a total of 87 universality classes.

As a byproduct of our analysis, we are easily able to classify non-Hermitian random
matrices without a Dirac structure. This leads to 43 classes.

2. Classification of Hermitian Dirac Hamiltonians

We first consider the Hermitian Hamiltonians which require V
†
± = V± and A

†
z = Az̄. Let us

define a ‘minimal class’ as a class of Dirac Hamiltonians which cannot be simultaneously
block diagonalized. For such Hamiltonians there exists no fixed unitary matrix S that
commutes with the Hamiltonian, H = SHS−1, and preserves the Dirac structure, which
requires S = diag(s, s). The existence of an integral of motion, such as spin, implies such an
S and the resulting Hamiltonian is thus not minimal according to our definition. Rather, our
ensembles apply to each block with fixed quantum numbers of the integrals of motion.

2.1. Compatible symmetries

Only type P and type C symmetries are relevant for Hermitian Hamiltonians. We first need
to classify the compatible operators P and C, or preferably the compatible γ and σ . It is
important to bear in mind that what is meaningful is the group generated by these symmetries.
For instance, if the Hamiltonian possesses both P and C symmetries, then it automatically has
another C-type symmetry C′:

H = ε ′
cC

′HTC ′−1 C ′ = PC ε ′
c = −εc. (2.1)

For Hermitian Hamiltonians, since C′ can be interpreted as a time-reversal (particle–hole)
symmetry if εc = −1 (εc = +1), the classes with both P and C symmetries thus automatically
have chirality, particle–hole and time-reversal symmetry.

The operators P and C are defined up to dilatations by scalars and up to unitary changes
of the basis H → UHU †, which preserve the form of the Dirac Hamiltonians. This requires
U = diag(u, u). On γ and σ , this translates into

γ → uγu† σ → uσuT (2.2)

with u being unitary. The unitarity and the order two constraints on P and C imply

γ γ † = 1 γ 2 = 1 σσ † = 1 σT = ±σ. (2.3)

These conditions are covariant under the gauge transformations (2.2).
First let us only impose a type P symmetry. Modulo (2.2) we can reduce γ to a diagonal

matrix with only ±1 on the diagonal. We may thus choose

case (1) : γ = 1 (2.4)
case (2) : γ = σz ⊗ 1. (2.5)

In the second case, we assumed for simplicity that the numbers +1 and −1 in γ are equal, but
this could be generalized.

Let us now impose only a type C symmetry. Up to the transformations (2.2), there are
two (standard) cases [13] depending on the condition σT = ±σ :

case (3) : σ = 1 (2.6)
case (4) : σ = iσy ⊗ 1. (2.7)



A classification of 2D random Dirac fermions 2559

Indeed, assume that σT = σ . Then, since σ is also unitary, σσ ∗ = 1 and its real and imaginary
parts commute and are both symmetric. They can be simultaneously diagonalized by a real
orthogonal matrix o, so that σ = oδoT with δ a diagonal unitary matrix. Hence, σ = uuT ,
with u = oδ1/2 unitary, and σ is equivalent to the identity modulo (2.2). The argument is
similar for σT = −σ .

Next we impose simultaneously type P and type C symmetries. These symmetries have
to be compatible in the sense that their actions on Hamiltonians should commute. For generic
Hamiltonians this requires that C ∝ PCPT , or σ ∝ γ σγ T . This condition is covariant
under transformations (2.2). So we may choose a basis in which γ is diagonal and we restrict
ourselves to the two cases (2.4), (2.5). We then have two sub-cases corresponding to the two
possible values ±1 of the proportionality coefficient in the above equation, so that σ either
commutes or anticommutes with γ :

σ = ±γ σγ T ⇒ [σ, γ ] = 0 or {σ, γ } = 0. (2.8)

If γ = 1, σ automatically commutes with it and we obtain

case (5) : γ = 1 σ = 1 (2.9)

case (6) : γ = 1 σ = iσy ⊗ 1. (2.10)

If γ = σz ⊗ 1, we have to separately consider the two possibilities in (2.8). The transformations
(2.2) have to preserve the form of γ so that u has to be block diagonal, u = diag(u1, u2) with
u1,2 unitary. When [σ, γ ] = 0, σ also has to be block diagonal, σ = diag(σ1, σ2). As above,
modulo (2.2) with u = diag(u1, u2), it can be reduced to σ = 1 if σT = σ and σ = iσy ⊗ 1 if
σT = −σ . Thus, we get two possibilities,

case (7) : γ = σz ⊗ 1 σ = 12 ⊗ 1 (2.11)

case (8) : γ = σz ⊗ 12 ⊗ 1 σ = 12 ⊗ iσy ⊗ 1. (2.12)

When {σ, q} = 0, σ has to be block off-diagonal, so that σ = ( 0 s

±sT 0

)
, with s being unitary,

depending on whether σ is symmetric or antisymmetric. The gauge transformations (2.2)
then become s → u1 s u

T
2 with u1,2 being unitary, and any unitary s is gauge equivalent to the

identity. This gives two cases:

case (9) : γ = σz ⊗ 1 σ = iσy ⊗ 1
(2.13)

case(9′) : γ = σz ⊗ 1 σ = σx ⊗ 1.

Cases (9) and (9′) turn out to be equivalent because the type C symmetry of one of the two
cases follows from the product of type P and type C symmetries of the other case.

Finally, let us consider more combinations of type P or C symmetries. If we impose two
symmetries of type P, their product commutes with the Hamiltonians and this system thus
does not correspond to a minimal class. Next, consider imposing two compatible symmetries
of type C with signs εc1 and εc2. If the product εc1εc2 = −1, their product (see equation (2.1))
makes a type P symmetry. Thus two type C symmetries with opposite εc signs are equivalent
to type P and type C symmetries which we have already classified. If the εc signs are equal, the
product of the two type C symmetries commutes with the Hamiltonians and this system is not
minimal. More generally, considering more combinations of type P and type C symmetries
does not lead to new minimal classes.
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2.2. List of classes

In this subsection we present the detailed structure of the resulting classes of Hamiltonians.
The type P and C symmetries impose the following relations on the generalized potentials and
masses:

P symmetry: γAz = Azγ γAz̄ = Az̄γ γV± + V±γ = 0 (2.14)
C symmetry: σAT

z + Azσ = 0 σAT
z̄ + Az̄σ = 0 σV T

± = ±εcV±σ. (2.15)

They possess a simple interpretation as they indicate that Az and Az̄ belong to an orthogonal
or symplectic Lie algebra depending on whether σ is symmetric or antisymmetric. The
compatibility relations (2.8), σ = ±γ σγ T , ensure that constraints (2.14) and (2.15) may be
imposed simultaneously. When imposing both type P and type C symmetries, one generates all
relations obtained by successive applications of these symmetries, i.e. all relations associated
with elements of the group generated by type P and C symmetries are imposed. As a
consequence, there could be different presentations of the same class depending on which
generators of this group one selects. For example, given a type P and a type C symmetry with
a sign εc, their product is again a type C symmetry but with an opposite sign −εc (see equation
(2.1)).

Solutions of the constraints (2.14) and (2.15) for the set of compatible γ and σ give the
following minimal classes:

class 0 : Az̄,Az ∈ gl(n) V± ∈ gl(n). (2.16)
class 1 : Az ∈ gl(n) V± = 0. (2.17)
class 2 : Az = diag(a+, a−) a± ∈ gl(n)

V± =
(

0 v±
w± 0

)
v±, w± ∈ gl(n).

(2.18)

class 3εc : Az =
(
a b

c d

)
= −AT

z ∈ so(n) a = −aT b = −cT

d = −dT V−εc = −V T
−εc

∈ so(n) Vεc = V T
εc

∈ gl(n) \ so(n).
(2.19)

class 4εc : Az =
(
a b

c d

)
= −σyA

T
z σy ∈ sp(2n) a = −dT b = bT

c = cT V−εc = −σyV
T
−εc

σy ∈ sp(2n)
Vεc = σyV

T
εc
σy ∈ gl(2n) \ sp(2n).

(2.20)

class 5 : Az = −AT
z ∈ so(n) V± = 0. (2.21)

class 6 : Az = −σyA
T
z σy ∈ sp(2n) V± = 0. (2.22)

class 7 : Az = diag(a+, a−) a± = −aT± ∈ so(n)

V± =
(

0 v±
w± 0

)
v±εc = ±wT

±εc
.

(2.23)

class 8 : Az = diag(a+, a−) a± = −σya
T
±σy ∈ sp(2n)

V± =
(

0 v±
w± 0

)
v±εc = ±σyw

T
±εc

σy.
(2.24)

class 9εc : Az = diag(a,−aT ) a ∈ gl(n)

V±εc =
(

0 v±εc

w±εc 0

)
v±εc = ∓vT±εc

w±εc = ∓wT
±εc

.
(2.25)

(The labels 1–9 refer to the cases 1–9 listed in the previous subsection.) The Hermiticity
constraints Az̄ = A

†
z, V± = V

†
±, v†± = w±, are implicit in this list. (The Hermiticity constraint
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is not made explicit for the purpose of describing the non-Hermitian classes in the next section.)
The index εc refers to one of the two possible values εc = ±, and the absence of such an index
means that this value is irrelevant. The first class corresponds to generic Dirac Hamiltonians
with no constraints imposed. There are a few degeneracies when solving equations (2.14)
and (2.15). As expected, cases 9 and 9′, equation (2.13), yield the same solutions; also
realizations of the cases 5 and 6, equations (2.9) and (2.10) are independent of the choice
of the sign εc. Realizations of the cases 7± are also equivalent because they correspond to
different presentations of the same class. Indeed, consider equation (2.11) in case 7. The
product of its type P and type C defining symmetries produces a new type C symmetry with
opposite sign and with σ ′ = σz ⊗ 1. It is gauge equivalent to the original symmetries as
σ ′ � u7σ

′uT7 = 12 ⊗ 1 with u7 = diag(1, i)⊗ 1. Hence cases 7+ and 7− are gauge equivalent
and we give the two presentations in the above list. The corresponding realizations are related
by similarity transformations H → H ′ = UHU † with U = diag(u7, u7), so that a′

± = ±a±
and v′

± = −iv±, w′
± = iw±. A similar argument applies to the cases 8± showing again that

they are equivalent presentations of the same class.
One of the origins of the distinction between the above classification and the classification

of random matrices arises from a difference in the notion of equivalent classes of compatible
symmetries. For random matrices, some of the cases with γ = 1 or γ = σz ⊗ 1 are
considered as equivalent because they correspond to the same operator P up to re-shuffling of
the lines and columns, while in the present classification they yield different classes because
we impose the 2 × 2 block structure (1.1) on the Hamiltonians6. Thus the classification of
the random Dirac operators is a bit finer than that of random matrices, as summarized in
table 1.

2.3. Symmetry groups, disorder measures and super-symmetric effective actions

Each class is stable under the action of a symmetry group, whose elements act on the
Hamiltonians by conjugation such that their form imposed by equations (2.16)–(2.25) is
preserved. Elements G of the symmetry groups satisfy7

GγG−1 = γ GσGT = σ. (2.26)

The list of these groups is given in table 1. For classes 2, 7, 8, in which the symmetry group
is a product of two subgroups, the embedding is diagonal with G = diag(g+, g−) where g±
belong either to U(n), O(n) or Sp(2n). In class 9 the embedding is G = diag(g, gT ) with
g ∈ U(n).

The symmetry group may be used to specify the disorder measures in each class, which we
assume to be Gaussian, with zero mean, and local. The measures are then fixed by requiring
them to be invariant under the symmetry group. The list of all quadratic invariants for each
class is the following:

class 0 : tr(AzAz̄), tr(Az)tr(Az̄), tr(V 2
±), tr(V±)2, tr(V±V∓), tr(V±)tr(V∓)

class 1 : tr(AzAz̄), tr(Az)tr(Az̄)

class 2 : tr(a±ā±), tr(a±)tr(ā±), tr(v†±v±), tr(v†±v∓)
class 3εc : tr(AzAz̄), tr

(
V 2

±εc

)
, tr(Vεc )

2

6 The classification of random matrices may be reread from the previous classification by considering that γ and σ

implement directly the discrete type P and C symmetries. Only the cases with γ = σz ⊗ 1 are then relevant since
γ = 1 is trivial. As it should be, we are left with ten classes 0, 2, 3±, 4±, 7, 8, 9±. However, in table 1, the random
matrix classes refer to those defined by C and P and not by γ and σ (see the appendix).
7 One may extend slightly the symmetry group by discrete groups, made of Z2 factors, by allowing signs in
equation (2.26), GγG−1 = ±γ , GσGT = ±σ .
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class 4εc : tr(AzAz̄), tr
(
V 2

±εc

)
, tr(Vεc )

2

class 5 : tr(AzAz̄)

class 6 : tr(AzAz̄)

class 7 : tr(a±ā±), tr(v†±v±)

class 8 : tr(a±ā±), tr(v†±v±)

class 9εc : tr(aā), tr(a)tr(ā), tr(v†±v±), tr(v†±v∓).

To preserve rotation invariance we only list the invariants which couple Az to Az̄ and V±
to itself or to V∓. Couplings between V± and V∓ break the symmetry under reflection
x → x, y → −y.

These ensembles may be analysed using the supersymmetric method [28]. For each class,
this leads to an effective field theory description with the number of coupling constants equal
to the number of invariants. These coupling constants, which measure the strength of the
disorder, parametrize perturbations of the free field theory valid in the absence of disorder. In
two dimensions, all of these effective field theories can be formulated as left–right current–
current perturbations, where the couplings are marginal [20]. This means that in the effective
field theory the coupling constants are dual to operators of scaling dimension two. The discrete
symmetry defining the classes plus the global invariance under the symmetry group should
ensure that for each class the effective field theory is perturbatively renormalizable, i.e. no
additional marginal operators beyond those dual to the coupling constants are generated by
the renormalization procedure. This aspect can be studied using the all-orders β function
proposed in [29], as was done for class 0 and for class 4− at n = 1 [30].

We can easily describe the global Lie superalgebra symmetry of the effective field theories.
The unperturbed conformal field theory has an osp(2N |2N) current algebra symmetry at
level 1 where N is the number of fermions, i.e. N = n for classes 0, 1, 3 and 5, N = 2n for
classes 2, 4, 6, 7 and 9, and N = 4n for class 8. In the supersymmetric effective theory the
global supersymmetry is smaller and corresponds to the Lie superalgebraic extension G of the
symmetry groups listed in table 1. The bosonic group U(n) is extended to gl(n|n), O(n) to
osp(n|n) and sp(2n) to osp(2n|2n), so that G = gl(n|n) for classes 0, 1, 9, G = osp(n|n) for
classes 3, 5, G = osp(2n|2n) for classes 4, 6 and a tensor product of these supergroups for
classes 2, 7, 8.

3. Classification of non-Hermitian Dirac Hamiltonians

The classification of non-Hermitian Dirac Hamiltonians we present is based on implementing
discrete symmetries of type P or C, equations (1.2), (1.3), and of type Q and K defined
in equations (1.5), (1.4). Since this parallels closely what we have done for Hermitian
Hamiltonians we only sketch the main features of the classification. The order two constraints
on type Q and type K symmetry are

ξξ † = 1 ξ2 = 1 κκ† = 1 κT = ±κ.

We consider Hamiltonians up to unitary changes of the basis, H → UHU †, with
U = diag(u, u), which act on Q and K as

ξ → uξu† κ → uκuT. (3.1)

As before we define minimal classes as those whose Hamiltonians do not commute with a
fixed matrix preserving their Dirac structure.
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Imposing type Q or K symmetries amounts to imposing some reality conditions on the
Hamiltonians, i.e. some reality properties of Az,Az̄ and V±:

Q symmetry: ξA
†
z̄ = Azξ ξV

†
± = εqV±ξ (3.2)

K symmetry: κA∗
z̄ + Azκ = 0 κV ∗

± = ±εkV±κ. (3.3)

Redefining H → iH modifies the signs εq and εk in equations (1.5), (1.4); however, this
redefinition ruins the Dirac structure (1.1) and we shall thus not allow it.

The classification of non-Hermitian Hamiltonians may be translated into detailed
properties of the Hermitian Hamiltonians H obtained by doubling the Hilbert spaces on
which the Dirac Hamiltonians H are acting:

H =
(

0 H

H † 0

)
. (3.4)

These doubled Hamiltonians are always chiral as they anticommute with 05 = diag(1,−1).
Any similarity transformation H → UHU−1 is mapped into H → UHU† with U =
diag(U,U †−1). Demanding that these transformations also act by similarity on H imposes U
to be unitary. When no discrete symmetries are imposed, the doubled Hamiltonians H are
always elements of class 2, which is embedded in the chiral GUE class. Indeed, up to the
re-shuffling of lines and columns, they may be presented as

H � Hd ≡




0 V
†

+ + V
†
− −i∂z̄ + A

†
z 0

V+ + V− 0 0 −i∂z̄ + Az̄

−i∂z + Az 0 0 V+ − V−
0 −i∂z + A

†
z̄ V

†
+ − V

†
− 0


 . (3.5)

The dictionary is thus a+ = Az, a− = A
†
z̄ and 2v± = (V

†
+ ± V+) + (V

†
− ∓ V−).

On H, both type P and Q symmetries act as chiral transformations, H → −PHP−1

with P = diag(P, P ) and H → εqQHQ−1 with Q = (
0 Q

Q 0

)
. Thus, H may be block

diagonalized if H is Q- or P-symmetric. Indeed, if H is Q-symmetric with εq = +1 then
Q and H may be simultaneously diagonalized since they commute. Similarly, if H is P- or
Q-symmetric with εq = −1, then H commutes with the product 05P or with 05Q.

Type C and K symmetries both act as particle–hole symmetries relatingH to its transposed
HT . The classification of the Hamiltonians H is then very simple as it follows from that of
Hermitian Dirac operators. For the operators H to be minimal, only a type C or a type K
symmetry can be imposed. Gauge equivalences (2.2), (3.1) leave only σ = 1 or σ = iσy ⊗ 1
and κ = 1 or κ = iσy ⊗ 1 as possible choices. We then have the correspondence

σ = 1 ⇒ H ∈ class 7
σ = iσy ⊗ 1 ⇒ H ∈ class 8
κ = 1 or κ = iσy ⊗ 1 ⇒ H ∈ class 9±.

(3.6)

Though we have translated the classification of non-Hermitian H into the doubled
Hermitian H, the spectra of H and H may differ significantly. To illustrate these potential
differences, consider the transformation H → H̃ = −iu7Hu7 where u7 = diag(1, i) ⊗ 1 is
the matrix we introduced in section 2. This transformation preserved the Dirac structure of
the Hamiltonians but not their reality conditions. It leaves invariant Az and Az̄ but not the
potentials since Ṽ ± = −iV∓. Hence H and H̃ should not belong to the same non-Hermitian
class—and they do not have the same spectra. On the contrary, for the doubled Hamiltonians
this transformation is lifted to H → H̃ = UHU† with U = diag(−iu7, u

†
7), so that H and H̃

are unitarily equivalent. They have identical spectra and belong to the same class.
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We thus present a classification of the Dirac operators H and not simply of the doubled
one. As for Hermitian Dirac operators, it is the group generated by compatible discrete
symmetries which is meaningful. There could be different but equivalent presentations of the
same group as not all of these symmetries are independent. Indeed, the product of a type P
symmetry with a C,K or Q symmetry is again a C,K or Q symmetry. (See, for example,
equation (2.1)). Also, the symmetries of type Q, C or K are linked as the product of any two
gives a symmetry of the third type.

Let us first impose only one type of symmetry. As in section 2, up to gauge equivalence
(2.2), (3.1), the solutions are

(γ = 1) (σ = 1)εc (ξ = 1)εq (κ = 1)εk
(γ = σz ⊗ 1) (σ = iσy ⊗ 1)εc (ξ = σz ⊗ 1)εq (κ = iσy ⊗ 1)εk .

Here, each column refers to one of the possible types of symmetry. Here and below, we
indicate as indices the values of εc, εq or εk which matter. Thus the above list corresponds to
14 distinct classes.

Let us now impose two kinds of symmetry. First, we may require simultaneously type
P and C symmetries. This leads to the list of six classes, from class 5 to class 9 of section 2
without any reality conditions.

Next we consider a P and a K symmetry. The commutativity condition for type P and
K symmetries reads κ = ±γ−1κγ ∗. This is solved the same way as σ = ±γ−1σγ T in the
previous section. Thus the list of compatible type P and K symmetries is parallel to the list of
compatible type P and C symmetries, only σ is replaced by κ . Their explicit realizations are
given in equations (2.21)–(2.25) but with vT± replaced by w∗

± and wT
± replaced by v∗

±. This
corresponds to six classes.

Similarly, compatibility between type P and Q symmetries requires γ † = ±ξ−1γ ξ .
Solving this constraint leads to the following compatible type P and Q symmetries:

(γ = 1, ξ = 1) (γ = 1 ⊗ 1, ξ = σz ⊗ 1) (γ = σz ⊗ 1, ξ = σx ⊗ 1)εq
(γ = σz ⊗ 1, ξ = 1 ⊗ 1)εq

∼= (γ = σz ⊗ 1, ξ = σz ⊗ 1)−εq .

In the second line, we have mentioned an equivalence between two solutions of the
commutativity constraint. Indeed, ξ of the second solution in this line is the product of
γ and ξ of the first solution, so the groups generated by these solutions are identical.

We may also impose together a type Q with a type C symmetry. Since their product is a
symmetry of type K with εk = εqεc, we are actually imposing simultaneously three compatible
symmetries of different types. Any two of them generate the third. The condition for type Q
and C symmetries to commute is ξT = ±σ †ξ−1σ ; for type C and K symmetries this condition
reads κT σ−1κσ ∗ = ±1. Up to gauge equivalences, the set of compatible type Q and C
symmetries is then

(ξ = 1, σ = 1)εq ,εc (ξ = σz ⊗ 1, σ = 1 ⊗ 1)εq ,εc
(ξ = σz ⊗ 1, σ = iσy ⊗ 1)εq,εc (ξ = 1 ⊗ 1, σ = iσy ⊗ 1)εq ,εc
(ξ = σz ⊗ 1, σ = 1 ⊗ iσy)εq ,εc (ξ = σz ⊗ 1, σ = σx ⊗ 1)εq,εc .

Finally, we may impose simultaneously a type P symmetry together with two among the
three types Q, C and K of symmetries. As before it is sufficient to consider only a P,C and
Q symmetry. The solutions of the commutativity requirements are then

(γ = 1 ⊗ 1, ξ = 1 ⊗ 1, σ = 1 ⊗ 1 or iσy ⊗ 1)

(γ = 1 ⊗ 1, ξ = σz ⊗ 1, σ = 1 ⊗ 1, σ = 1 ⊗ iσy, iσy ⊗ 1 or σx ⊗ 1)
(γ = σz ⊗ 1, ξ = 1 ⊗ 1, σ = 1 ⊗ 1 or 1 ⊗ iσy)εq
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(γ = σz ⊗ 1, ξ = 1 ⊗ 1, σ = σx ⊗ 1)εq ,εc
(γ = σz ⊗ 1, ξ = σx ⊗ 1, σ = 1 ⊗ 1, 1 ⊗ iσy, σx ⊗ 1, or σx ⊗ iσy)εq ,εc .

Here, each choice of σ corresponds to a different class.
Considering more combinations of the four different kinds of symmetries would not lead

to new minimal classes, because in such case we would always be able to construct some
matrix commuting with the Hamiltonians and preserving their Dirac structure.

For each set of compatible symmetries, one has to choose the signs εq , εc and εk to specify
the classes. These signs are used to index the solutions in the above lists. The absence of one
of these indices means that the corresponding solution is independent of that index. The grand
total is 87 classes.

It is straightforward to determine the form of H for each of the above symmetry classes;
however, there is little motivation to list the details here. Let us just describe a simple example,
corresponding to imposing a symmetry of type K, relating H to its complex conjugate, with
κ = 1 and εk = +1. Then, relations (3.3) yield Az̄ = −A∗

z and V± = ±V ∗
±, such that V+ is

real and V− imaginary. As a consequence, the Dirac Hamiltonian may be written as(
M −i∂z̄ − A∗

z

−i∂z + Az M∗

)

with M = V+ + V−. This class, studied e.g. in reference [31], is closely related to the random
XY model. The doubled Hamiltonian belongs to class 9−.

Having performed the above classification we can easily specialize it to random non-
Hermitian matrices with no Dirac structure. As for random Hermitian matrices (see the
appendix for a summary), the above classes with γ = 1 are trivial and should be thrown away.
The choice of the signs εq and εk is also irrelevant since they can be absorbed into H → iH
which is now allowed since no Dirac structure is imposed. Altogether this gives 43 classes
which will be described in greater detail in [32].

Appendix

For completeness—and to explain table 1—we recall the definition of random Hermitian
matrix ensembles [15]. We denote by small letters quantities referring to random matrices.
Let h = h† be a Hermitian matrix and p and c be the operators implementing the discrete
symmetries as in equations (2.14), (2.15): h → −php−1, h → εcch

T c−1. For each random
matrix class, the defining relations for p and c are summarized in table A1.

Table A1. Random matrix classes.

Random matrix
classes Discrete symmetry relations

A h = h†

AI cT = c, εc = +
AII cT = −c, εc = +
AIII p2 = 1
C cT = −c, εc = −
D cT = c, εc = −
DI p2 = 1, cT = c, εc = ±, pcpT = c

CII p2 = 1, cT = −c, εc = ±, pcpT = c

CI p2 = 1, cT = ±c, εc = ±, pcpT = −c

DIII p2 = 1, cT = ±c, εc = ∓, pcpT = −c
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In each of the last four lines of table A1, one may equivalently choose either the upper or
the lower signs, since this simply corresponds to choosing two equivalent presentations of the
same class.

To compare with the classification of Dirac fermions, it is useful to note that in the latter
case the operators P and C may be written as

P = τz ⊗ γ C = iτy ⊗ σ for εc = + C = τx ⊗ σ for εc = −.
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